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ABSTRACT
We analyse the convergence of a GA when the mutation
probability is low and the selection pressure is high, for ar-
bitrary crossover types and probabilities. We succeed in
mathematically proving that the stationary distribution as-
sociated with the Markov chain concentrates on uniform
populations of the best individuals, as would be expected.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—simulated an-
nealing, stochastic programming ; G.3 [Probability and Statis-
tics]: markov processes; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search

General Terms
Algorithms, Performance, Reliability, Theory

Keywords
genetic algorithms, stationary distribution, crossover

1. INTRODUCTION
Genetic Algorithms have been used in various disciplines

as an optimization tool since they were introduced by Hol-
land in 1975. Notwithstanding their broad landscape of us-
age and practically impressive results, little has been done
to prove their efficiency or boost their credibility in a rigor-
ous mathematical framework until recently. It was mainly
in the past decade that such mathematically interesting re-
sults were discovered: notably by De Jong (1985), Nix and
Vose (1992), Rudolph (1994), Banzhaf and Reeves (1999)
etc.

A GA can be modelled using a Markov chain, which would
be ergodic as long as the mutation probability is positive,
which in turn guarantees the convergence of the chain with
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a unique stationary distribution. This is the model used in
most mathematical analyses of GAs.

Davis and Principe (1991), one of the first in this endeav-
our, tried to extrapolate results from the already mathe-
matically rich area of Simulated Annealing into GAs. Davis
proved that the stationary distribution of his GA was asymp-
totically positive over the uniform population subset of the
search space when mutation tends to zero.

Suzuki (1997) later extended this work to the limit distri-
bution when the selective pressure is arbitrarily large. He
proved that this limit concentrates around the uniform pop-
ulations of the fittest individuals.

Cerf (1996) extensively studied the asymptotic dynamics
of the stationary distribution of his mutation-selection al-
gorithm in the context of generalized simulated annealing,
using the tools developed by Freidlin and Wentzell (1984).

More recently, Schmitt (2001) was able to prove that his
scaled GA, which included crossover, asymptotically con-
verged to the optimal solution under certain conditions. He
was able tp prove that if the mutation rate converges to zero
slow enough to ensure weak ergodicity of the Markov chain
concerned, and if the selection pressure increases fast enough
(satisfying a convergence condition), the GA asymptotically
behaves like a certain take-the-best algorithm, which in turn
converges to the optimal solution, if the population size is
larger than the length of the genome, and if the selection
pressure satisfies a certain convergence condition. The fit-
ness function is assumed to be injective, and mutation and
crossover commute.

Out of the above-mentioned papers, Davis’s, Suzuki’s and
Schmitt’s were the only papers to at least consider crossover,
which seems to be quite an ’unpopular’ parameter when it
comes to mathematical analysis of GAs. Suzuki proved his
result in the advent of crossover at an asymptotically van-
ishing level. We will prove that this same result(with certain
limitations) is valid under an arbitrary crossover probabil-
ity. We believe that our result, which sheds light on the
convergence of the GA to an optimal solution with crossover
probability positive, will help bring the mathematical anal-
ysis of GAs one little step closer to the Simple Genetic Al-
gorithm, where crossover plays an integral role. Schmitt’s
result, although chronologically positioned before ours, is an
excellent example illustrating the practical achievability of
this stationary distribution, although under restricting con-
ditions.
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2. THE MODEL AND PREVIOUS WORK

2.1 Notation
L: Length of the bit-string representing each individual
N = 2L: Number of possible individuals
M : Number of individuals in each population
S: State space of M -individual populations
J = {0, 1, ...N − 1}: Set of individuals
ij : Individual with the j’th largest fitness value
z[i, s]: Number of occurences of i ∈ J in s ∈ S
f(i): Fitness value of i ∈ J
l: f(i1) = ... = f(il) > f(il+1) ≥ f(il+1) ≥ ... ≥ f(iN )
µ: Mutation probability
χ: Crossover probability
H(i, j): Hamming distance between i, j ∈ J
|i|: Number of one’s in i ∈ J
U ⊂ S: set of uniform populations u(i), consisting of i ∈ J
V = {s ∈ S|1 ≤ z[ij , s] ≤ M − 1,∃j = 1, 2, ...l}
Vj = {s ∈ S|1 ≤ z[ij , s] ≤ M − 1, z[ik, s] = 0, k �= j ∈
{1, ..., l}}, j = 1, ..., l
S[u]: Set of states t ∈ S such that for some j ∈ J ,
1) z[i, t] = M − 1;
2) z[j, t] = 1;
3) H(i, j) = 1;
for u = u(i) ∈ U

2.2 The Markov Chain Model
The transition probability Q(t|s) from s ∈ S to t ∈ S

takes the form of a multinomial distribution,

Q(t|s) =
M !

Πj∈Jz[j, t]!
Πi∈JP (i|s)z[i,t] (1)

where P (i|s) is the probability of generating an individual
i ∈ J from a state s ∈ S. When proportional selection is
assumed (with no mutation and crossover), we have,

P1(i|s) =
z[i, s]f(i)

Σj∈Jz[j, s]f(j)
(2)

When crossover and mutation are positive, we have,

P2(k|s) = Σi,j∈JP1(i|s)P1(j|s)ri,j(k), k ∈ J, s ∈ S (3)

where ri,j(k) is the probability that k ∈ J is generated from
i, j ∈ J by crossover and mutation, and ri,j(k) = ri⊕k,j⊕k(0)
holds (Vose (1999)). Suzuki (1998) introduced a formula for
ri,j(0) when uniform crossover was used.

2.3 Previous Results
Davis determined an expression for the stationary distri-

bution q(µ) over S for fixed µ, and its limit q as µ → 0. for
s ∈ S, we have

q(µ)[s] =
det(Q[s] − I)P

t∈S det(Q[t] − I)
(4)

by solving the linear equation q(µ)Q = q(µ) using Cramer’s
rule, where the (t, s)-element of Q is the transition proba-
bility Q(s|t), and Q[s] is obtained by replacing in Q the s’th
row by the zero vector (0, ...0).

The limit is given as

q[s] = lim
µ→0

q(µ)[s]

=

(
limµ→0 det(Q∗[s]−I)

P
t∈U limµ→0 det(Q∗[t]−I)

[s ∈ U ]

0 [s ∈ S − U ]
(5)

where the elements of Q∗[u], u ∈ U , are defined by

Q∗[u](t|s) =

j
0 [s = u]

Q(t|s) +
P

v∈U−u δ(t ∈ S[v])Q(v|s)
L

[s �= u]

for s, t ∈ S − U ∪ {u}. Note that |S[u]| = L for u ∈ U , and
that the matrix Q∗[u] has the following property:X

t∈S−U∪{u}
Q∗[u](t|s)

=
X

t∈S−U∪{u}
Q(t|s) +

X
v∈U−{u}

X
t∈S[v]

Q(v|s)
L

=
X

t∈S−U∪{u}
Q(t|s) +

X
v∈U−{u}

Q(v|s)

=
X
t∈S

Q(t|s)

= 1 (6)

for s ∈ S − U .
Suzuki proved the following convergence theorem.

Proposition1: For the 3 operator algorithms, the sta-
tionary distribution focuses on the best population as the
mutation probability µ → 0, crossover probability χ → 0,
and the fitness ratio

F = max
1≤j≤N−1,f(ij ) �=f(ij+1)

f(ij+1)/f(ij) → 0 (7)

ie. X
s∈{u(i1)....u(il)}

lim
F→0

lim
χ→0

lim
µ→0

q(µ)[s] = 1 (8)

Notice that Proposition 1 essentially assumes χ = 0. Suzuki
proves this theorem by showing that,
limF→0 limχ→0 limµ→0 det(Q∗[u(ij)] − I) �= 0, j = 1, 2, ...l,
and
limF→0 limχ→0 limµ→0 det(Q∗[u(ij)] − I) = 0, j = l + 1, l +
2, ...N.
Albuquerque and Mazza (2000) derived a similar result when
χ = 0. However, they consider a GA with a noise-function
added to the fitness function so as to break any existing ties
and get a unique fittest individual.

3. EXTENSION FORPOSITIVE CROSSOVER
CASE

3.1 Unique Best Individual Case
Suzuki[13] proved the following lemma in the course of the

proof of Proposition 1.

Lemma1:
∀s ∈ V + ∪l

j=1{u(ij)}

lim
F→0

lim
χ→0

lim
µ→0

X
t∈V +∪l

j=1{u(ij)}
Q(t|s) = 1 (9)

and for any pair of t ∈ S − V − ∪l
j=1{u(ij)} and s ∈ V +

∪l
j=1{u(ij)},

lim
F→0

lim
χ→0

lim
µ→0

Q(t|s) = 0 (10)
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proof

lim
F→0

lim
χ→0

lim
µ→0

X
t∈V ∪∪l

j=1{u(ij)}
Q(t|s)

= lim
F→0

[1 − {1 −
lX

k=1

P1(ik|s)}M ]

= lim
F→0

[1 − {
PN

k=l+1 z[ik, s]f(ik)P
i∈J z[i, s]f(i)

}M ] = 1

Q.E.D.

With a fixed positive crossover probability, and l = 1,Pl
k=1 P1(ik|s) will be replaced by

P2(i1|s) =
X

i,j∈J

P1(i|s)P1(j|s)ri,j(i1)

→ P1(i1|s)P1(i1|s)ri1,i1(i1) = 1

as F → 0. The lemma is still true. Thus, Proposition 1
would still hold under positive crossover probability, pro-
vided there is a unique best individual.

3.2 Two or More Best Individuals
Lemma2:

∀s ∈ Vj ∪ {u(ij)}
lim
F→0

lim
µ→0

Q(u(ij)|s) = 1 (11)

and for any pair of t ∈ S − {u(ij)} and s ∈ Vj ∪ {u(ij)},
lim
F→0

lim
µ→0

Q(t|s) = 0 (12)

The proof is trivial if it is noted that limF→0 limµ→0 P1(ij |s)
= 1 for s ∈ Vj ∪ {u(ij)}.

Q.E.D.

Let us prove that limF→0 limµ→0 det(Q∗[u(i1)] − I) �= 0.
Let W 1

p and D1
p be submatrices of Q∗[u(i1)] which con-

sist of rows and columns indexed by V1 and S − U − V1

respectively. Then,

lim
F→0

lim
µ→0

det(Q∗[u(i1)] − I) = − det(W 1 − I|V1|)

× det(D1 − I|S−U−V1|) (13)

holds. Here, W 1 := limF→0 limµ→0 W 1
p and

D1 := limF→0 limµ→0 D1
p. For any s ∈ V1, since {u(i1)} ∩

S[u] = ø for all u ∈ U ,X
t∈V1∪{u(i1)}

Q∗[u(i1)](t|s)

=
X

t∈V1∪{u(i1)}
Q(t|s)

+
X

v∈U−{u(i1)}

X
t∈(V1∪{u(i1)})∩S[v]

Q(v|s)
L

=
X

t∈V1∪{u(i1)}
Q(t|s) +

NX
j=l+1

|V1 ∩ S[u(ij)]|Q(u(ij)|s)
L

→ 1 (14)

from Lemma2 and u(ij) ∈ S − V1 − u(i1), j = l + 1, ..., N .
Combining this with (6), it turns out that all (s, t) elements
of Q∗[u(i1)], s ∈ V1, t ∈ S − U − V1 diminishes as in Fig.1
below.

�

�
�

�

� �� �

S − U − V1

V1

V1 S − U − V1

u(i1)

u(i1)

0 · · · 0 0 · · · 0−1

W 1 − I|V1| 0

D1 − I|S−U−V1|

Figure 1: limit of the matrix Q∗[u(i1)] − I

Now, we need to prove that the sum of some row in W 1

and in D1 is strictly less than one, in order to show that
there exists primitive stochastic matrices W ∗ and D∗ such
that 0 ≤ W 1 ≤ W ∗, W 1 �= W ∗ and 0 ≤ D1 ≤ D∗, D1 �= D∗

(see Appendix). This in turn would prove that all spectral
radii of W 1 and D1 are strictly less than one, meaning that
the two determinants on the right hand side of eq.(13) are
nonzero.

(1) For W 1: for s ∈ V1,

lim
F→0

lim
µ→0

Q∗[u(i1)](u(i1)|s) = lim
F→0

lim
µ→0

Q(u(i1)|s) = 1 (15)

from Lemma1.
(2) For D1:

lim
F→0

lim
µ→0

Q∗[u(i1)](u(i1)|s) = lim
F→0

lim
µ→0

Q(u(i1)|s) > 0 (16)

where we choose s from V −∪Vj such that i1 occurs at least
once. Note that here we use the fact that l > 1.

These complete the proof of limF→0 limµ→0 det(Q∗[u(i1)]−
I) �= 0. Similarly, limF→0 limµ→0 det(Q∗[u(ij)] − I) �= 0,
j = 2, ..., l can be proved.

Next, we shall prove that det(Q∗[u(il+1)]) → 0 as F → 0
after µ → 0.

Let W l+1
p and Dl+1

p be submatrices of Q∗[u(il+1)] which
consist of rows and columns indexed by V1 and S−U−V1 re-
spectively. Let W l+1 := limF→0 limµ→0 W l+1

p and Dl+1 :=

limF→0 limµ→0 Dl+1
p . Now, if we can prove

lim
F→0

lim
µ→0

det(Q∗[u(il+1)] − I) = − det(W l+1 − I|V1|)

det(Dl+1 − I|S−U−V1|) (17)
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then it is sufficient to show det(W l+1 − I|V1|) = 0. Thus, all
we have to prove is

lim
F→0

lim
µ→0

X
t∈V1

Q∗[u(il+1)](t|s) = 1 (18)

for any s ∈ V1. In fact, then, W l+1 is a stochastic matrix,
and thus includes one as an eigenvalue (see Appendix). For
any s ∈ V1

X
t∈V1

Q∗[u(il+1)](t|s) =
X
t∈V1

Q(t|s)

+
X

v∈U−{u(il+1)}

X
t∈V1∩S[v]

Q(v|s)
L

=
X
t∈V1

Q(t|s) + Q(u(i1)|s) +

NX
j=l+2

[H(i1, ij) = 1]
Q(u(ij)|s)

L

=
X

t∈V1∪{u(i1)}
Q(t|s) → 1 (19)

from Lemma1.
This completes the proof of limF→0 limµ→0 det(Q∗[u(il+1)]

−I) = 0.
Similarly, limF→0 limµ→0 det(Q∗[u(ij)] − I) = 0, j = l +
2, ..., N .

Thus, we have proven that Proposition1 holds for arbi-
trary values of crossover. Let us reformulate:
Theorem1
For the 3 operator algorithms, the stationary distribution
focuses on the best uniform populations as the mutation
probability µ → 0 and the fitness ratio

F = max
1≤j≤N−1,f(ij ) �=f(ij+1)

f(ij+1)/f(ij) → 0 (20)

ie. X
s∈{u(i1)....u(il)}

lim
F→0

lim
µ→0

q(µ)[s] = 1 (21)

Remark 1. This result is not necessarily true when the
limit is taken in the reverse order.
Example 1 :L = 2, M = 2.
The fitness function f is defined as,
f(00) = 4 × t3, f(01) = 1, f(10) = 2 × t, f(11) = 3 × t2 for
t = 1.
Thus, letting t go to infinity is equivalent to letting F go to
zero. Direct computation shows that,
limµ→0 limF→0 q(µ) = (2/3, 0, 0, 0, 0, 0, 0, 0, 0, 1/3).
where the two nonzero positions correspond to u(00) and
u(11) respectively.
This is also true regarding the main theorem in [13].

Remark 2. We cannot suggest how fast this convergence
takes place, as our analysis does not touch on convergence
rates.

1This example is due to Schmitt[12], section8.3

4. DISCUSSION
This paper tries to extend Suzuki’s previous results on

GAs to the nonzero crossover case. We have proven that
the population asymptotically goes to the uniform popula-
tion of an optimal solution (best individual) when the two
parameters of selection and mutation are very small, for
positive crossover probability. It should be noted that this
result is valid whatever the crossover type is, and whether
the crossover probability stays fixed or varies (decreases or
even increases!).

It is always easier to analyse GAs when the parameters
are asymptotically small, the reasons being obvious. Thus,
many results regarding the limit of the stationary distribu-
tion at this asymptotic level are already available. The only
problem is that these algorithms are more of Simulated An-
nealing than GAs, with their variable parameters none of
which represent anything close to crossover. Although even
mutation may be sometimes regarded as analogous to the
’temperature’ in SA theory, SA does not have any param-
eter that may be compared with crossover, which may be
one reason why most asymptotic treatments of GAs (using
techniques borrowed from the mathematically rich area of
SA theory) conveniently forget crossover altogether.

It is reassuring to know that this result is still valid when
crossover exists. We hope that this would be an encourage-
ment to researchers who work on GAs with nonzero crossover.

Our result is very mathematical and, by itself, has little
practical significance since the parameters of our GA are
practically unattainable. It is preferably read in an abstract
perspective as an asymptotic result ratifying and unifying
any future convergence results towards this ’perfect’ station-
ary distribution.
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APPENDIX

A. THE PERRON-FROBENIUS THEOREM
Let A be a stochastic primitive matrix. Then,

1. α = 1 is an eigenvalue of A;

2. α = 1 has corresponding left and right eigenvectors
with strictly positive components;

3. α = 1 > |α′| for any eigenvalue α′ �= α;

4. the eigenvectors associated with α = 1 are unique to
constant multiples;

5. If 0 ≤ B ≤ A and β is an eigenvalue of B, then |β| ≤
α = 1. Moreover, |β| = α = 1 implies B = A.

6. α = 1 is a simple root of the characteristic polynomial
of A.

1151


